Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
Arch Virol ; 168(10): 245, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37676512

RESUMO

A new positive-sense, single-stranded RNA virus, tentatively named "Valeriana jatamansi tymovirus 1" (VaJV1, OQ730267), was isolated from Valeriana jatamansi Jones displaying symptoms of vein-clearing in Yunnan Province, China. The complete genome of VaJV1 consists of 6,215 nucleotides and contains three open reading frames (ORFs). The genome structure of VaJV1 is typical of members of the genus Tymovirus. BLASTn analysis and multiple sequence alignments showed that the complete genome and coat protein of VaJV1 shared the most sequence similarity (65.5% nucleotides and 50.5% amino acid sequence identity) with an isolate of the tymovirus okra mosaic virus (NC_009532). Phylogenetic analysis confirmed that VaJV1 clustered most closely with other tymoviruses. We propose that Valeriana jatamansi tymovirus 1 represents a new species within the genus Tymovirus.


Assuntos
Tymovirus , Valeriana , China , Filogenia , Nucleotídeos , Análise de Sequência
2.
Plant Sci ; 336: 111864, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37689279

RESUMO

To understand the role of Zn and Cd in anti-viral defence, Zn/Cd hyperaccumulator Noccaea caerulescens plants grown with deficient (0.3 µM), replete (10 µM) and excess (100 µM) Zn2+ and Cd (10 µM Zn2+ + 1 µM Cd2+) were infected with Turnip yellow mosaic virus (TYMV). Gas exchange and chlorophyll fluorescence kinetics analyses demonstrated direct TYMV effects on photosynthetic light reactions but N. caerulescens was more resistant against TYMV than the previously studied non-hyperaccumulator N. ochroleucum. Virus abundance and photosynthesis inhibition were the lowest in the high Zn and Cd treatments. RNAseq analysis of 10 µM Zn2+ plants revealed TYMV-induced upregulation of Ca transporters, chloroplastic ZTP29 and defence genes, but none of those that are known to be strongly involved in hyperaccumulation. Synchrotron µ-XRF tomography, however, showed that Zn hyperaccumulation remained strongest in vacuoles of epidermal storage cells regardless of infection. This was in contrast to N. ochroleucum, where apoplastic Zn drastically increased in response to TYMV. These results suggest that the antiviral response of N. caerulescens is less induced by the onset of this biotic stress, but it is rather a permanent resistant state of the plant. Real-time qPCR revealed upregulation of ferritin in Zn10 infected plants, suggesting Fe deprivation as a virus defence strategy under suboptimal Zn supply.


Assuntos
Brassicaceae , Tymovirus , Cádmio , Zinco/farmacologia , Brassicaceae/genética
3.
J Virol Methods ; 319: 114771, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37437780

RESUMO

Virus-like particles (VLPs) is one of the most favourable subjects of study, especially in the field of nanobiotechnology and vaccine development because they possess good immunogenicity and self-adjuvant properties. Conventionally, VLPs can be tagged and purified using affinity chromatography or density gradient ultracentrifugation which is costly and time-consuming. Turnip yellow mosaic virus (TYMV) is a plant virus, where expression of the viral coat protein (TYMVc) in Escherichia coli (E. coli) has been shown to form VLP. In this study, we report a non-chromatographic method for VLP purification using C-terminally His-tagged TYMVc (TYMVcHis6) as a protein model. Firstly, the TYMVcHis6 was cloned and expressed in E. coli. Upon clarification of cell lysate, nickel (II) chloride [NiCl2; 15 µM or equivalent to 0.0000194% (w/v)] was added to precipitate TYMVcHis6. Following centrifugation, the pellet was resuspended in buffer containing 1 mM EDTA to chelate Ni2+, which is then removed via dialysis. A total of 50% of TYMVcHis6 was successfully recovered with purity above 0.90. Later, the purified TYMVcHis6 was analysed with sucrose density ultracentrifugation, dynamic light scattering (DLS), and transmission electron microscopy (TEM) to confirm VLP formation, which is comparable to TYMVcHis6 purified using the standard immobilized metal affinity chromatography (IMAC) column. As the current method omitted the need for IMAC column and beads while significantly reducing the time needed for column washing, nickel affinity precipitation represents a novel method for the purification of VLPs displaying poly-histidine tags (His-tags).


Assuntos
Brassica napus , Tymovirus , Humanos , Níquel/química , Níquel/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Cromatografia de Afinidade/métodos
4.
PLoS Pathog ; 19(1): e1010482, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696453

RESUMO

Post-Transcriptional Gene Silencing (PTGS) is a defense mechanism that targets invading nucleic acids of endogenous (transposons) or exogenous (pathogens, transgenes) origins. During plant infection by viruses, virus-derived primary siRNAs target viral RNAs, resulting in both destruction of single-stranded viral RNAs (execution step) and production of secondary siRNAs (amplification step), which maximizes the plant defense. As a counter-defense, viruses express proteins referred to as Viral Suppressor of RNA silencing (VSR). Some viruses express VSRs that totally inhibit PTGS, whereas other viruses express VSRs that have limited effect. Here we show that infection with the Turnip yellow mosaic virus (TYMV) is enhanced in Arabidopsis ago1, ago2 and dcl4 mutants, which are impaired in the execution of PTGS, but not in dcl2, rdr1 and rdr6 mutants, which are impaired in the amplification of PTGS. Consistently, we show that the TYMV VSR P69 localizes in siRNA-bodies, which are the site of production of secondary siRNAs, and limits PTGS amplification. Moreover, TYMV induces the production of the host enzyme RNASE THREE-LIKE 1 (RTL1) to further reduce siRNA accumulation. Infection with the Tobacco rattle virus (TRV), which also encodes a VSR limiting PTGS amplification, induces RTL1 as well to reduce siRNA accumulation and promote infection. Together, these results suggest that RTL1 could be considered as a host susceptibility gene that is induced by viruses as a strategy to further limit the plant PTGS defense when VSRs are insufficient.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Doenças das Plantas , Proteínas Repressoras , Tymovirus , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mutação , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Tymovirus/genética , Tymovirus/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/virologia
5.
Virol J ; 20(1): 17, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36710353

RESUMO

Leaves of hollyhock (Alcea rosea) exhibiting vein chlorosis and yellow mosaic symptoms were collected at public sites in Lausanne and Nyon, two cities of western Switzerland. Diagnostic methods untangled in samples from both sites the mixed infections of a novel isometric virus, tentatively named "Alcea yellow mosaic virus" (AYMV) with the carlavirus Gaillardia latent virus. A new potyvirus was also identified in samples from Nyon. A combination of Illumina, Nanopore and Sanger sequencing was necessary to assemble the full-length genome of AYMV, revealing an exceptionally high cytidine content and other features typically associated with members of the genus Tymovirus. The host range of AYMV was found to be restricted to mallows, including ornamentals as well as economically important plants. Phylogenetic analyses further showed that AYMV belongs to a Tymovirus subclade that also gathers the other mallow-infecting members. The virus was readily transmitted by sap inoculation, and the weevil species Aspidapion radiolus was evidenced as a vector. Transmission assays using another weevil or other insect species did not succeed, and seed transmission was not observed.


Assuntos
Coinfecção , Malvaceae , Vírus do Mosaico , Tymovirus , Gorgulhos , Animais , Tymovirus/genética , Filogenia , Doenças das Plantas
6.
J Virol Methods ; 309: 114595, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35931228

RESUMO

Turnip yellow mosaic virus (TYMV) is a well-studied icosahedral plant virus that has attractive properties for nanoscience applications. Stable empty particles devoid of viral genomic RNA have historically been generated from virions by: 1. high pressure; 2. extreme alkaline pH; and 3. freeze-thaw using liquid nitrogen. Herein we report a fourth and more convenient avenue for empty particle formation through EDTA treatment, implicating chelation of virion-associated cations. We present findings that confirm TYMV virions purified in an EDTA-based buffer are converted to 94 % empty on average during purification. Additional experimentation revealed TYMV virions purified through CsCl vs. sucrose gradients are more readily converted to empty particles after freeze thaw. These studies are novel as they show a purification method through EDTA-treatment that can generate stable empty particles devoid of viral genome. The convenience of this method should prove suitable for scientists seeking to use TYMV capsids in nanoscience-inspired applications. Importantly, these findings provide insight into historical discrepancies in creating empty particles after freeze-thaw, as the method in which TYMV virions are purified influences the downstream virion-to-empty conversion process.


Assuntos
Tymovirus , Capsídeo/química , Cátions Bivalentes/análise , Ácido Edético/análise , Nitrogênio/análise , RNA Viral/análise , Sacarose/análise , Tymovirus/química , Tymovirus/genética , Vírion/genética
7.
FEBS J ; 289(17): 5089-5099, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34117728

RESUMO

tRNA-like structures (TLSs) were first identified in the RNA genomes of turnip yellow mosaic virus. Since then, TLSs have been found in many other species including mammals, and the RNAs harboring these structures range from viral genomic RNAs to mRNAs and noncoding RNAs. Some progress has also been made on understanding their functions that include regulation of RNA replication, translation enhancement, RNA-protein interaction, and more. In this review, we summarize the current knowledge about the regulations and functions of these TLSs. Possible future directions of the field are also briefly discussed.


Assuntos
RNA Viral , Tymovirus , Genoma Viral , Conformação de Ácido Nucleico , RNA de Transferência/química , RNA de Transferência/genética , RNA Viral/química , RNA Viral/genética , Tymovirus/genética
8.
Viruses ; 13(10)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34696481

RESUMO

This review summarizes research on virus diseases of cereals and oilseeds in Australia since the 1950s. All viruses known to infect the diverse range of cereal and oilseed crops grown in the continent's temperate, Mediterranean, subtropical and tropical cropping regions are included. Viruses that occur commonly and have potential to cause the greatest seed yield and quality losses are described in detail, focusing on their biology, epidemiology and management. These are: barley yellow dwarf virus, cereal yellow dwarf virus and wheat streak mosaic virus in wheat, barley, oats, triticale and rye; Johnsongrass mosaic virus in sorghum, maize, sweet corn and pearl millet; turnip yellows virus and turnip mosaic virus in canola and Indian mustard; tobacco streak virus in sunflower; and cotton bunchy top virus in cotton. The currently less important viruses covered number nine infecting nine cereal crops and 14 infecting eight oilseed crops (none recorded for rice or linseed). Brief background information on the scope of the Australian cereal and oilseed industries, virus epidemiology and management and yield loss quantification is provided. Major future threats to managing virus diseases effectively include damaging viruses and virus vector species spreading from elsewhere, the increasing spectrum of insecticide resistance in insect and mite vectors, resistance-breaking virus strains, changes in epidemiology, virus and vectors impacts arising from climate instability and extreme weather events, and insufficient industry awareness of virus diseases. The pressing need for more resources to focus on addressing these threats is emphasized and recommendations over future research priorities provided.


Assuntos
Produtos Agrícolas/virologia , Grão Comestível/virologia , Doenças das Plantas/virologia , Agricultura/métodos , Austrália , Ilarvirus , Luteovirus , Doenças das Plantas/etiologia , Potyviridae , Potyvirus , Tymovirus , Viroses/epidemiologia
9.
J Appl Microbiol ; 131(4): 2072-2080, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33629458

RESUMO

AIMS: To display a short peptide (GSRSHHHHHH) at the C-terminal end of turnip yellow mosaic virus coat protein (TYMVc) and to study its assembly into virus-like particles (TYMVcHis6 VLPs). METHODS AND RESULTS: In this study, recombinant TYMVcHis6 expressed in Escherichia coli self-assembled into VLPs of approximately 30-32 nm. SDS-PAGE and Western blot analysis of protein fractions from the immobilized metal affinity chromatography (IMAC) showed that TYMVcHis6 VLPs interacted strongly with nickel ligands in IMAC column, suggesting that the fusion peptide is protruding out from the surface of VLPs. These VLPs are highly stable over a wide pH range from 3·0 to 11·0 at different temperatures. At pH 11·0, specifically, the VLPs remained intact up to 75°C. Additionally, the disassembly and reassembly of TYMVcHis6 VLPs were studied in vitro. Dynamic light scattering and transmission electron microscopy analysis revealed that TYMVcHis6 VLPs were dissociated by 7 mol l-1 urea and 2 mol l-1 guanidine hydrochloride (GdnHCl) without impairing their reassembly property. CONCLUSIONS: A 10-residue peptide was successfully displayed on the surface of TYMVcHis6 VLPs. This chimera demonstrated high stability under extreme thermal conditions with varying pH and was able to dissociate and reassociate into VLPs by chemical denaturants. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first C-terminally modified TYMVc produced in E. coli. The C-terminal tail which is exposed on the surface can be exploited as a useful site to display multiple copies of functional ligands. The ability of the chimeric VLPs to self-assemble after undergo chemical denaturation indicates its potential role to serve as a nanocarrier for use in targeted drug delivery.


Assuntos
Tymovirus , Proteínas do Capsídeo/genética , Escherichia coli/genética , Microscopia Eletrônica de Transmissão , Proteínas Recombinantes
10.
Mol Pharm ; 17(12): 4629-4636, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33186039

RESUMO

Nanoparticle-based prodrugs offer an effective strategy to improve the safety and delivery of small-molecule therapeutics while reducing the risk of drug resistance. Here, we conjugated a maleimide-functionalized cisplatin prodrug containing Pt(IV) to the internal and/or external surface of virus-like particles (VLPs) derived from Physalis mottle virus (PhMV) to develop a pH-sensitive drug delivery system. The internally loaded and PEGylated VLPs (Pt-PhMVCy5.5-PEG) were taken up efficiently by cancer cells where they released platinum, presumably as a reduced, DNA-reactive Pt(II) complex, rapidly under acidic conditions in vitro (>80% in 30 h). The efficacy of the VLP-based drug delivery system was demonstrated against a panel of cancer cell lines, including cell lines resistant to platinum therapy. Furthermore, Pt-PhMVCy5.5-PEG successfully inhibited the growth of xenograft MDA-MB-231 breast tumors in vivo and significantly prolonged the survival of mice compared to free cisplatin and cisplatin-maleimide. Pt-PhMVCy5.5-PEG therefore appears promising as a prodrug to overcome the limitations of conventional platinum-based drugs for cancer therapy.


Assuntos
Cisplatino/farmacocinética , Portadores de Fármacos/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Tymovirus/química , Animais , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Liberação Controlada de Fármacos , Resistencia a Medicamentos Antineoplásicos , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Neoplasias/patologia , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Biotechnol J ; 15(12): e2000077, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32918857

RESUMO

The controlled release of drugs using nanoparticle-based delivery vehicles is a promising strategy to improve the safety and efficacy of chemotherapy. A simple, scalable, and reproducible strategy is developed to synthesize a drug delivery system (DDS) by loading 6-maleimidocaproyl-hydrazone doxorubicin (DOX-EMCH) into the empty core of virus-like particles (VLPs) derived from Physalis mottle virus (PhMV) via a combination of chemical conjugation to cysteine residues and π-π stacking interactions with the anchored doxorubicin molecule. The DOX-EMCH prodrug features an acid-sensitive hydrazine linker that triggers the release of doxorubicin in the slightly acidic extracellular tumor microenvironment or acidic endosomal or lysosomal compartments following cellular uptake. The VLP external surface is coated with polyethylene glycol (PEG) to prevent non-specific uptake and improve biocompatibility. The DOX-PhMV-PEG particles are stable in vitro and show greater efficacy in vivo compared to free doxorubicin in a breast tumor mouse model (using MDA-MB-231 cells and nude mice): 92% of the tumor-bearing mice treated with DOX-PhMV-PEG are completely cured compared to 27% of those treated with free doxorubicin under the same conditions, representing a 3.4-fold improvement. These results lay a foundation for the further development of this biological drug delivery system for a new generation of chemotherapy products.


Assuntos
Doxorrubicina/uso terapêutico , Neoplasias , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Nus , Nanopartículas , Neoplasias/tratamento farmacológico , Polietilenoglicóis , Pró-Fármacos , Tymovirus
12.
J Biol Chem ; 295(40): 13769-13783, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32732284

RESUMO

Single-stranded, positive-sense RNA viruses assemble their replication complexes in infected cells from a multidomain replication polyprotein. This polyprotein usually contains at least one protease, the primary function of which is to process the polyprotein into mature proteins. Such proteases also may have other functions in the replication cycle. For instance, cysteine proteases (PRO) frequently double up as ubiquitin hydrolases (DUB), thus interfering with cellular processes critical for virus replication. We previously reported the crystal structures of such a PRO/DUB from Turnip yellow mosaic virus (TYMV) and of its complex with one of its PRO substrates. Here we report the crystal structure of TYMV PRO/DUB in complex with ubiquitin. We find that PRO/DUB recognizes ubiquitin in an unorthodox way: It interacts with the body of ubiquitin through a split recognition motif engaging both the major and the secondary recognition patches of ubiquitin (Ile44 patch and Ile36 patch, respectively, including Leu8, which is part of the two patches). However, the contacts are suboptimal on both sides. Introducing a single-point mutation in TYMV PRO/DUB aimed at improving ubiquitin-binding led to a much more active DUB. Comparison with other PRO/DUBs from other viral families, particularly coronaviruses, suggests that low DUB activities of viral PRO/DUBs may generally be fine-tuned features of interaction with host factors.


Assuntos
Enzimas Desubiquitinantes/química , Peptídeo Hidrolases/química , Tymovirus/enzimologia , Ubiquitina/química , Proteínas Virais/química , Cristalografia por Raios X , Enzimas Desubiquitinantes/genética , Peptídeo Hidrolases/genética , Tymovirus/genética , Ubiquitina/genética , Proteínas Virais/genética
13.
Theor Appl Genet ; 133(2): 383-393, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31690991

RESUMO

KEY MESSAGE: Partially dominant resistance to Turnip yellows virus associated with one major QTL was identified in the natural allotetraploid oilseed rape cultivar Yudal. Turnip yellows virus (TuYV) is transmitted by the peach-potato aphid (Myzus persicae) and causes severe yield losses in commercial oilseed rape crops (Brassica napus). There is currently only one genetic resource for resistance to TuYV available in brassica, which was identified in the re-synthesised B. napus line 'R54'. In our study, 27 mostly homozygous B. napus accessions, either doubled-haploid (DH) or inbred lines, representing a diverse subset of the B. napus genepool, were screened for TuYV resistance/susceptibility. Partial resistance to TuYV was identified in the Korean spring oilseed rape, B. napus variety Yudal, whilst the dwarf French winter oilseed rape line Darmor-bzh was susceptible. QTL mapping using the established Darmor-bzh × Yudal DH mapping population (DYDH) revealed one major QTL explaining 36% and 18% of the phenotypic variation in two independent experiments. A DYDH line was crossed to Yudal, and reciprocal backcross (BC1) populations from the F1 with either the susceptible or resistant parent revealed the dominant inheritance of the TuYV resistance. The QTL on ChrA04 was verified in the segregating BC1 population. A second minor QTL on ChrC05 was identified in one of the two DYDH experiments, and it was not observed in the BC1 population. The TuYV resistance QTL in 'R54' is within the QTL interval on Chr A04 of Yudal; however, the markers co-segregating with the 'R54' resistance are not conserved in Yudal, suggesting an independent origin of the TuYV resistances. This is the first report of the QTL mapping of TuYV resistance in natural B. napus.


Assuntos
Brassica napus/genética , Brassica napus/virologia , Doenças das Plantas/genética , Doenças das Plantas/virologia , Tymovirus , Animais , Afídeos , Mapeamento Cromossômico , Resistência à Doença , Genótipo , Haploidia , Fenótipo , Locos de Características Quantitativas
14.
J Microbiol Biotechnol ; 29(11): 1790-1798, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31546296

RESUMO

Flock House virus (FHV), an insect RNA virus, has a bipartite genome. FHV RNA1 can be packaged in turnip yellow mosaic virus (TYMV) as long as the FHV RNA has a TYMV sequence at the 3'-end. The encapsidated FHV RNA1 has four additional nucleotides at the 5'- end. We investigated whether the recombinant FHV RNA1 could replicate in mammalian cells. To address this issue, we prepared in vitro transcribed FHV RNAs that mimicked the recombinant FHV RNA1, and introduced them into baby hamster kidney (BHK) cells. The result showed that the recombinant FHV RNA1 was capable of replication. An eGFP gene inserted into the frame with B2 gene of the FHV RNA1 was also successfully expressed. We also observed that eGFP expression at the protein level was strong at 28°C but weak at 30°C. Sequence analysis showed that the 3'-ends of the RNA1 and RNA3 replication products were identical to those of the authentic FHV RNAs. This indicates that FHV replicase correctly recognized an internally-located replication signal. In contrast, the 5'-ends of recombinant FHV RNA1 frequently had deletions, indicating random initiation of (+)-strand synthesis.


Assuntos
Fibroblastos/virologia , Genes Reporter/genética , Nodaviridae/fisiologia , RNA Viral/metabolismo , Animais , Linhagem Celular , Cricetinae , Expressão Gênica , Genoma Viral/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Nodaviridae/genética , RNA Viral/genética , Tymovirus/genética , Replicação Viral
15.
Plant Dis ; 103(9): 2246-2251, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31287777

RESUMO

Naranjilla (Solanum quitoense Lam.) and tamarillo (S. betaceum Cav.) are two important perennial solanaceous crops grown in Ecuador for the fresh market and juice production. Viruses infecting tamarillo and naranjilla are currently poorly studied, and no clean stock program exists in Ecuador. Here, we report a new virus, provisionally named as naranjilla mild mosaic virus (NarMMV) (genus Tymovirus, family Tymoviridae), isolated from naranjilla grown in an orchard in Pichincha Province, Ecuador. The complete genome of the virus consists of 6,348 nucleotides and encodes three open reading frames typical for members of the genus Tymovirus. Phylogenetically, Chiltepin yellow mosaic virus, Eggplant mosaic virus, and the recently characterized naranjilla chlorotic mosaic virus (NarCMV) were found to be the closest relatives of NarMMV. Unlike NarCMV, the new virus induced mild mosaic in naranjilla and more severe symptoms in tamarillo. Similar to NarCMV, NarMMV was unable to systemically infect potato. Virus surveys found NarMMV prevalent in naranjilla production areas of two provinces of Ecuador, especially where hybrid cultivars of naranjilla were cultivated. NarMMV was also found in field-grown tamarillo. The new virus cross-reacted with antibodies developed against NarCMV. Hence, this antibody will be useful for its field diagnosis using enzyme-linked immunosorbent assay or immunocapture reverse transcription polymerase chain reaction in future virus-free certification programs.


Assuntos
Solanum , Tymovirus , Equador , Genoma Viral/genética , Filogenia , Prevalência , Solanum/virologia , Tymovirus/classificação , Tymovirus/genética , Tymovirus/fisiologia
16.
Plant Sci ; 284: 99-107, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31084885

RESUMO

Phloem-mobile mRNAs are assumed to contain sequence elements directing RNA to the phloem translocation pathway. One of such elements is represented by tRNA sequences embedded in untranslated regions of many mRNAs, including those proved to be mobile. Genomic RNAs of a number of plant viruses possess a 3'-terminal tRNA-like structures (TLSs) only distantly related to genuine tRNAs, but nevertheless aminoacylated and capable of interaction with some tRNA-binding proteins. Here, we elaborated an experimental system for analysis of RNA phloem transport based on an engineered RNA of Potato virus X capable of replication, but not encapsidation and movement in plants. The TLSs of Brome mosaic virus, Tobacco mosaic virus and Turnip yellow mosaic virus were demonstrated to enable the phloem transport of foreign RNA. A miRNA precursor, pre-miR390b, was also found to render RNA competent for the phloem transport. In line with this, sequences of miRNA precursors were identified in a Cucurbita maxima phloem transcriptome, supporting the hypothesis that, at least in some cases, miRNA phloem signaling can involve miRNA precursors. Collectively, the data presented here suggest that RNA molecules can be directed into the phloem translocation pathway by structured RNA elements such as those of viral TLSs and miRNA precursors.


Assuntos
MicroRNAs/metabolismo , Floema/metabolismo , RNA de Plantas/metabolismo , RNA de Transferência/metabolismo , Bromovirus/metabolismo , Cucurbita/metabolismo , Cucurbita/virologia , MicroRNAs/fisiologia , Floema/fisiologia , Potexvirus/metabolismo , RNA de Transferência/fisiologia , Vírus do Mosaico do Tabaco/metabolismo , Tymovirus/metabolismo
17.
Nat Nanotechnol ; 14(7): 712-718, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31110265

RESUMO

Large doses of chemical pesticides are required to achieve effective concentrations in the rhizosphere, which results in the accumulation of harmful residues. Precision farming is needed to improve the efficacy of pesticides, but also to avoid environmental pollution, and slow-release formulations based on nanoparticles offer one solution. Here, we tested the mobility of synthetic and virus-based model nanopesticides by combining soil column experiments with computational modelling. We found that the tobacco mild green mosaic virus and cowpea mosaic virus penetrate soil to a depth of at least 30 cm, and could therefore deliver nematicides to the rhizosphere, whereas the Physalis mosaic virus remains in the first 4 cm of soil and would be more useful for the delivery of herbicides. Our experiments confirm that plant viruses are superior to synthetic mesoporous silica nanoparticles and poly(lactic-co-glycolic acid) for the delivery and controlled release of pesticides, and could be developed as the next generation of pesticide delivery systems.


Assuntos
Agricultura/métodos , Preparações de Ação Retardada/metabolismo , Vírus do Mosaico/metabolismo , Praguicidas/metabolismo , Microbiologia do Solo , Comovirus/metabolismo , Nanopartículas/metabolismo , Solo/química , Vírus do Mosaico do Tabaco/metabolismo , Tymovirus/metabolismo
18.
ACS Appl Mater Interfaces ; 11(20): 18213-18223, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31074602

RESUMO

One of the greatest challenges in nanomedicine is the low efficiency with which nanoparticles are delivered to lesions such as tumors in vivo. Here, we show that Physalis mottle virus (PhMV)-like nanoparticles can be developed as bimodal contrast agents to achieve long circulation, specific targeting capability, and efficient delivery to tumors in vivo. The self-assembling coat protein nanostructure offers various opportunities to modify the internal and external surfaces separately. After loading the internal cavity of the particles with the fluorescent dye Cy5.5 and paramagnetic Gd(III) complexes, we modified the outer surface by PEGylation and conjugation with targeting peptides. Using this combined approach, we were able to monitor a human prostate tumor model for up to 10 days by near-infrared fluorescence and magnetic resonance imaging, with up to 6% of the injection dose remaining. Our results show that PhMV-like nanoparticles provide a promising and innovative platform for the development of next-generation diagnostic and therapeutic agents.


Assuntos
Carbocianinas , Meios de Contraste , Gadolínio , Imageamento por Ressonância Magnética , Nanopartículas , Neoplasias Experimentais/diagnóstico por imagem , Imagem Óptica , Tymovirus/química , Animais , Carbocianinas/química , Carbocianinas/farmacologia , Meios de Contraste/química , Meios de Contraste/farmacologia , Gadolínio/química , Gadolínio/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/uso terapêutico , Células PC-3
19.
Arch Virol ; 164(7): 1753-1760, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31025116

RESUMO

The expression of several structural proteins from a wide variety of viruses in heterologous cell culture systems results in the formation of virus-like particles (VLPs). These VLPs structurally resemble the wild-type virus particles and have been used to study viral assembly process and as antigens for diagnosis and/or vaccine development. Tomato blistering mosaic virus (ToBMV) is a tymovirus that has a 6.3-kb positive-sense ssRNA genome. We have employed the baculovirus expression vector system (BEVS) for the production of tymovirus-like particles (tVLPs) in insect cells. Two recombinant baculoviruses containing the ToBMV wild-type coat protein (CP) gene or a modified short amino-terminal deletion (Δ2-24CP) variant were constructed and used to infect insect cells. Both recombinant viruses were able to express ToBMV CP and Δ2-24CP from infected insect cells that self-assembled into tVLPs. Therefore, the N-terminal residues (2-24) of the native ToBMV CP were shown not to be essential for self-assembly of tVLPs. We also constructed a third recombinant baculovirus containing a small sequence coding for the major epitope of the chikungunya virus (CHIKV) envelope protein 2 (E2) replacing the native CP N-terminal 2-24 amino acids. This recombinant virus also produced tVLPs. In summary, ToBMV VLPs can be produced in a baculovirus/insect cell heterologous expression system, and the N-terminal residues 2-24 of the CP are not essential for this assembly, allowing its potential use as a protein carrier that facilitates antigen purification and might be used for diagnosis.


Assuntos
Baculoviridae/genética , Proteínas do Capsídeo/biossíntese , Tymovirus/crescimento & desenvolvimento , Tymovirus/genética , Proteínas do Envelope Viral/biossíntese , Montagem de Vírus/genética , Animais , Proteínas do Capsídeo/genética , Linhagem Celular , Vírus Chikungunya/genética , Expressão Gênica/genética , Solanum lycopersicum/virologia , Mariposas/citologia , Proteínas do Envelope Viral/genética
20.
Vet Microbiol ; 229: 20-27, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30642595

RESUMO

The aim of the present study is to use Physalis mottle virus (PhMV) coat protein (CP) as a scaffold to display the neutralizing epitopes of Infectious bursal disease virus (IBDV) VP2. For this, three different chimeric constructs were synthesized by replacing the N-terminus of PhMV CP with tandem repeats of neutralizing epitopes of IBDV VP2 and expressed in Escherichia coli. Expression analysis revealed that all the three recombinant chimeric coat protein subunits are soluble in nature and self-assembled into virus-like particles (VLPs) as evidenced through sucrose density gradient ultracentrifugation. The chimeric VLPs were characterized by various biochemical and biophysical techniques and found that they are stable and structurally sound. When the chimeric VLPs were used as coating antigen, they were able to detect IBDV antibodies. These results indicated that the chimeric VLPs can be used as potential vaccine candidates for the control of IBDV, which needs to be further evaluated in animal models.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Birnaviridae/veterinária , Vírus da Doença Infecciosa da Bursa/imunologia , Animais , Anticorpos Neutralizantes , Infecções por Birnaviridae/sangue , Infecções por Birnaviridae/virologia , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/metabolismo , Galinhas , Epitopos , Tymovirus , Proteínas Estruturais Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...